• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | He, Meng (He, Meng.) | Wang, Lulin (Wang, Lulin.) | Zhang, Haitong (Zhang, Haitong.)

收录:

EI Scopus SCIE

摘要:

Automatic sentiment analysis of social media texts is of great significance for identifying people's opinions that can help people make better decisions. Annotating data is time consuming and laborious, and effective sentiment analysis on domains lacking of labeled data has become a problem. Crossdomain sentiment classification is a promising task, which leverages the source domain data with rich sentiment labels to analyze the sentiment polarity of the target domain lacking supervised information. Most of the existing researches usually explore algorithms that select common features manually to bridge different domains. In this paper, we propose a Wasserstein based Transfer Network (WTN) to share the domain-invariant information of source and target domains. We benefit from BERT to achieve rich knowledge and obtain deep level semantic information of text. The recurrent neural network with attention is used to capture features automatically, and Wasserstein distance is applied to estimate feature representations of source and target domains, which could help to capture significant domain-invariant features by adversarial training. Extensive experiments on Amazon datasets demonstrate that WTN outperforms other state-of-the-art methods significantly. Especially, the model behaves more stable across different domains. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Word embedding Attention mechanism Wasserstein distance Cross-domain sentiment classification

作者机构:

  • [ 1 ] [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [He, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Lulin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Haitong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 杜永萍

    [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

KNOWLEDGE-BASED SYSTEMS

ISSN: 0950-7051

年份: 2020

卷: 204

8 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:309/3910542
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司