• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Xiao, Hanghang (Xiao, Hanghang.) | Yang, Cuicui (Yang, Cuicui.)

收录:

EI Scopus SCIE

摘要:

Functional module detection in protein-protein interaction (PPI) network is one important content of the proteomics research in the post-genomic era. Nowadays the swarm intelligence and evolutionary based approaches have become effective ways for detecting functional modules. This paper proposes a novel hybrid approach of fireworks algorithm and differential evolution strategies for functional module detection in PPI networks (called HFADE-FMD). HFADE-FMD first initializes each firework individual into a candidate functional module partition based on label propagation according to the topological and functional information between protein nodes. Then HFADE-FMD uses the explosion operator of firework algorithm, and mutation, crossover and selection strategies of differential evolution algorithm to iteratively search for better functional module partitions. To verify the performance of HFADE-FMD, this paper compared it with ten competitive methods on four public PPI datasets. The experimental results show that HFADE-FMD achieves prominent performance with respective to Recall, Sn, PPV, and ACC metrics while performing well in terms of Precision and F-measure metrics. Thus, it is able to more accurately detect functional modules and help biologists to find some novel biological insights.

关键词:

Protein-protein interaction network Functional module detection Explosion operation Differential evolution strategies Fireworks algorithm

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Coll Comp Sci, Beijing, Peoples R China
  • [ 2 ] [Xiao, Hanghang]Beijing Univ Technol, Fac Informat Technol, Beijing Coll Comp Sci, Beijing, Peoples R China
  • [ 3 ] [Yang, Cuicui]Beijing Univ Technol, Fac Informat Technol, Beijing Coll Comp Sci, Beijing, Peoples R China
  • [ 4 ] [Ji, Junzhong]Beijing Artificial Intelligence Inst, Municipal Key Lab Multimedia & Intelligent Softwa, Beijing, Peoples R China
  • [ 5 ] [Xiao, Hanghang]Beijing Artificial Intelligence Inst, Municipal Key Lab Multimedia & Intelligent Softwa, Beijing, Peoples R China
  • [ 6 ] [Yang, Cuicui]Beijing Artificial Intelligence Inst, Municipal Key Lab Multimedia & Intelligent Softwa, Beijing, Peoples R China

通讯作者信息:

  • [Yang, Cuicui]Beijing Univ Technol, Fac Informat Technol, Beijing Coll Comp Sci, Beijing, Peoples R China;;[Yang, Cuicui]Beijing Artificial Intelligence Inst, Municipal Key Lab Multimedia & Intelligent Softwa, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2020

期: 2

卷: 51

页码: 1118-1132

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:119/3909069
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司