• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

姜春福 (姜春福.) | 余跃庆 (余跃庆.) (学者:余跃庆)

收录:

CQVIP PKU CSCD

摘要:

对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络(CIDRNN)作了改进,提出一种新的动态递归神经网络结构,称为状态延迟动态递归神经网络(State DelayInput Dynamical Recurrent Neural Network).具有这种新的拓扑结构和学习规则的动态递归网络,不仅明确了各权值矩阵的意义,而且使权值的训练过程更为简洁,意义更为明确.仿真实验表明,这种结构的网络由于增加了网络输入输出的前一步信息,提高了收敛速度,增强了实时控制的可能性.然后将该网络用于机器人未知非线性动力学的辨识中,使用辨识实际输出与机理模型输出之间的偏差,来识别机理模型或简化模型所丢失的信息,既利用了机器人现有的建模方法,又可以减小网络运算量,提高辨识速度.仿真结果表明了这种改进的有效性.

关键词:

机器人 跟踪辨识 动态递归网络

作者机构:

  • [ 1 ] [姜春福]北京工业大学
  • [ 2 ] [余跃庆]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

自动化学报

ISSN: 0254-4156

年份: 2003

期: 5

卷: 29

页码: 741-747

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 8

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1178/3893004
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司