收录:
摘要:
One of the major challenges of immune checkpoint blockade (ICB) is the poor penetration of antibody for solid tumor treatment. Herein, peptides with deeper penetration capability are used to develop a click reaction-assisted peptide immune checkpoint blockade (CRICB) strategy that could in situ construct assemblies, enabling enhanced accumulation and prolonged PD-L1 occupancy, ultimately realizing high-performance tumor inhibition. First, the free DBCO-modified targeting peptide (TP) efficiently recognizes and binds PD-L1 in a deep solid tumor. Upon a reagent-free click reaction with a subsequently introduced azide-tethered assembled peptide (AP), the click reaction results in spontaneous self-aggregation in situ with enhanced accumulation and prolonged occupancy. In addition, the penetration of TP-AP (121.2 +/- 15.5 mu m) is significantly enhanced compared with that of an antibody (19.9 +/- 5.6 mu m) in a solid tumor tissue. More importantly, significant immunotherapy effects and negligible side effects are observed in 4T1 and CT26 tumor-bearing mice models treated with TP-AP, suggesting the high-performance tumor inhibition attributed to the CRICB strategy. In summary, this CRICB strategy manifest the preferable effects of immune checkpoint blockade, thereby extending the biomedical application of assembling peptides.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
年份: 2020
期: 36
卷: 12
页码: 40042-40051
9 . 5 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:37
JCR分区:1