• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Guoliang (Zhang, Guoliang.) | Zhang, Liang (Zhang, Liang.) | Han, Xiaoyu (Han, Xiaoyu.) | Zhang, Shujun (Zhang, Shujun.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI SCIE CSCD

摘要:

Partial nitritation (PN)-anaerobic ammonium oxidation (anammox) is a promising pathway for the biological treatment of wastewater. However, the destruction of the system caused by excessive accumulation of nitrate in long-term operation remains a challenge. In this study, PN-anammox was initialized with low inoculation quantity in an air-lift reactor. The nitrogen removal rate of 0.71 kgN/(m(3). d) was obtained, which was far higher than the seed sludge (0.3 kgN/(m(3).d)). Thereafter, excess nitrate build-up was observed under low-loading conditions, and recovery strategies for the PN-anammox system were investigated. Experimental results suggest that increasing the nitrogen loading rate as well as the concentration of free ammonium failed to effectively suppress the nitrite oxidation bacteria (NOB) after the PN-anammox system was disrupted. Afterwards, effluent back-flow was added into the reactor to control the up-flow velocity. As a result, an aggressive discharge of sludge that promoted the synergetic growth of functional bacteria was achieved, leading to the successful restoration of the PN-anammox system. The partial nitritation and anammox activity were in balance, and an increase in nitrogen removal rate up to 1.07 kgN/(m(3). d) was obtained with a nitrogen removal efficiency of 82.4% after recovery. Besides, the proportion of granular sludge (over 200 mu m) increased from 33.67% to 82.82%. Ammonium oxidation bacteria (AOB) along with anammox bacteria were enriched in the granular sludge during the recovery period, which was crucial for the recovery and stable operation of the PN-anammox system. (c) Higher Education Press 2020

关键词:

Aggressive discharge of sludge Excess nitrate build-up Granular sludge PN-anammox Recovery strategy for partial nitrification

作者机构:

  • [ 1 ] [Zhang, Guoliang]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Liang]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Han, Xiaoyu]Beijing Drainage Grp Technol, Res & Dev Ctr, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Shujun]Beijing Drainage Grp Technol, Res & Dev Ctr, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Liang]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING

ISSN: 2095-2201

年份: 2020

期: 2

卷: 15

6 . 4 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:30

JCR分区:2

被引次数:

WoS核心集被引频次: 19

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:650/2914902
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司