• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tu, Shanshan (Tu, Shanshan.) | Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Waqas, Muhammad (Waqas, Muhammad.) | Rehman, Obaid Ur (Rehman, Obaid Ur.) | Shah, Zubair (Shah, Zubair.) | Yang, Zhongliang (Yang, Zhongliang.) | Koubaa, Anis (Koubaa, Anis.)

收录:

EI Scopus SCIE

摘要:

Training optimization plays a vital role in the development of convolution neural network (CNN). CNNs are hard to train because of the presence of multiple local minima. The optimization problem for a CNN is non-convex, hence, has multiple local minima. If any of the chosen hyper-parameters are not appropriate, it will end up at bad local minima, which leads to poor performance. Hence, proper optimization of the training algorithm for CNN is the key to converge to a good local minimum. Therefore, in this paper, we introduce an evolutionary convolution neural network (ModPSO-CNN) algorithm. The proposed algorithm results in the fusion of modified particle swarm optimization (ModPSO) along with backpropagation (BP) and convolution neural network (CNN). The training of CNN involves ModPSO along with backpropagation (BP) algorithm to encourage performance improvement by avoiding premature convergence and local minima. The ModPSO have adaptive, dynamic and improved parameters, to handle the issues in training CNN. The adaptive and dynamic parameters bring a proper balance between the global and local search ability, while an improved parameter keeps the diversity of the swarm. The proposed ModPSO algorithm is validated on three standard mathematical test functions and compared with three variants of the benchmark PSO algorithm. Furthermore, the performance of the proposed ModPSO-CNN is also compared with other training algorithms focusing on the analysis of computational cost, convergence and accuracy based on a standard problem specific to classification applications, such as CIFAR-10 dataset and face and skin detection dataset.

关键词:

Particle swarm optimization Visual recognition Convolution neural network Backpropagation

作者机构:

  • [ 1 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Waqas, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Shah, Zubair]Hamad bin Khalifa Univ, Coll Sci & Engn, Div ICT, Ar Rayyan, Qatar
  • [ 4 ] [Waqas, Muhammad]Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Comp Sci & Engn, Swabi, Pakistan
  • [ 5 ] [Rehman, Obaid Ur]Sarhad Univ Sci & IT, Dept Elect Engn, Peshawar, Pakistan
  • [ 6 ] [Yang, Zhongliang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing, Peoples R China
  • [ 7 ] [Koubaa, Anis]Prince Sultan Univ, Fac Comp Sci, Robot & Internet Things Res Lab, Riyadh, Saudi Arabia
  • [ 8 ] [Koubaa, Anis]Polytech Inst Porto, ISEP, INESC TEC, CISTER, P-4200465 Porto, Portugal
  • [ 9 ] [Rehman, Sadaqat Ur]Namal Inst, Dept Comp Sci, Mianwali 42250, Pakistan

通讯作者信息:

  • [Rehman, Sadaqat Ur]Namal Inst, Dept Comp Sci, Mianwali 42250, Pakistan

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SOFT COMPUTING

ISSN: 1432-7643

年份: 2020

期: 3

卷: 25

页码: 2165-2176

4 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 21

SCOPUS被引频次: 23

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:303/4429445
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司