Indexed by:
Abstract:
The problem of direct adaptive neural control for a class of nonlinear systems with an unknown gain sign and nonlinear uncertainty is discussed in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks (MNNs), and using Nussbaum-type function, a novel design scheme of direct adaptive neural control is proposed. By adopting the adaptive compensation term of the upper bound function of the sum of residual and approximation error, the closed-loop control system is shown to be globally stable, with tracking error converging to zero. Simulation results show the effectiveness of the proposed approach.
Keyword:
Reprint Author's Address:
Email:
Source :
ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS
ISSN: 0302-9743
Year: 2005
Volume: 3610
Page: 345-352
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: