Indexed by:
Abstract:
This paper proposes using neural networks (NN) to implement a real coded genetic algorithm (GA) with the center of gravity crossover (CGX) and the minimal generation gap (MGG) model. With all genetic operations of GA including selection, crossover, mutation and evaluation implemented with NN modules, this approach can realize in parallel genetic operations on the whole chromosome to achieve the maximum parallel realization potential of the MGG model of the GA. At the same time expensive hardware for field programmable gate arrays (FPGA) and the high speed memory of hardware for GA can be avoided. The performance of our solution is validated with a suite of benchmark test functions. This paper suggests that implementing GA with NN is a promising research direction for greatly reducing the running time of GA.
Keyword:
Reprint Author's Address:
Email:
Source :
NEURAL COMPUTING & APPLICATIONS
ISSN: 0941-0643
Year: 2004
Issue: 3
Volume: 13
Page: 221-228
6 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: