收录:
摘要:
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络 (CIDRNN)作了改进 ,提出一种新的动态递归神经网络结构 ,称为状态延迟动态递归神经网络 (StateDelayInputDynamicalRecurrentNeuralNetwork) .具有这种新的拓扑结构和学习规则的动态递归网络 ,不仅明确了各权值矩阵的意义 ,而且使权值的训练过程更为简洁 ,意义更为明确 .仿真实验表明 ,这种结构的网络由于增加了网络输入输出的前一步信息 ,提高了收敛速度 ,增强了实时控制的可能性 .然后将该网络用于机器人未知非线性动力学的辨识中 ,使用辨识实际输出与机理模型输出之间的偏差 ,来识别...
关键词:
通讯作者信息:
电子邮件地址:
来源 :
自动化学报
年份: 2003
期: 05
页码: 741-747