• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shang, Fei (Shang, Fei.) | Zhan, Jingyuan (Zhan, Jingyuan.) | Chen, Yangzhou (Chen, Yangzhou.) (学者:陈阳舟)

收录:

EI Scopus SCIE

摘要:

With the rapid development of urban rail transit systems and the consequent sharp increase of energy consumption, the energy-saving train operation problem has been attracting much attention. Extensive studies have been devoted to optimal control of a single metro train in an inter-station run to minimize the energy consumption. However, most of the existing work focuses on offline optimization of the energy-saving driving strategy, which still needs to be tracked in real train operation. In order to attain better performance in the presence of disturbances, this paper studies the online optimization problem of the energy-saving driving strategy for a single metro train, by employing the model predictive control (MPC) approach. Firstly, a switched-mode dynamical system model is introduced to describe the dynamics of a metro train. Based on this model, an MPC-based online optimization problem is formulated for obtaining the optimal mode switching times with minimal energy consumption for a single train in an inter-station run. Then we propose an algorithm to solve the constrained optimization problem at each time step by utilizing the exterior point penalty function method. The proposed online optimal train control algorithm which determines the mode switching times can not only improve the computational efficiency but also enhances the robustness to disturbances in real scenarios. Finally, the effectiveness and advantages of this online optimal train control algorithm are illustrated through case studies of a single train in an inter-station run.

关键词:

online metro train model predictive control energy saving switched-mode dynamical systems

作者机构:

  • [ 1 ] [Shang, Fei]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhan, Jingyuan]Beijing Univ Technol, Coll Artificial Intelligence & Automat, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Yangzhou]Beijing Univ Technol, Coll Artificial Intelligence & Automat, Beijing 100124, Peoples R China

通讯作者信息:

  • 陈阳舟

    [Chen, Yangzhou]Beijing Univ Technol, Coll Artificial Intelligence & Automat, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENERGIES

年份: 2020

期: 18

卷: 13

3 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:425/4296966
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司