• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Yutao (Liu, Yutao.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Li, Xiu (Li, Xiu.) | Zhang, Yongbing (Zhang, Yongbing.)

收录:

EI Scopus SCIE

摘要:

Opinion-unaware blind image quality assessment (OU BIQA) refers to establishing a blind quality prediction model without using the expensive subjective quality scores, which is a highly promising direction in the BIQA research. In this article, we focus on OU BIQA and propose a novel OU BIQA method. Specifically, in our proposed method, we deeply investigate the natural scene statistics (NSS) and the perceptual characteristics of the human brain for visual perception. Accordingly, a set of quality-aware NSS and perceptual characteristics-related features are designed to characterize the image quality effectively. For inferring the image quality, we learn a pristine multivariate Gaussian (MVG) model on a collection of pristine images, which serves as the reference information for quality evaluation. At last, the quality of a new given image is defined by measuring the divergence between its MVG model and the learned pristine MVG model. Thorough experiments performed on seven popular image databases demonstrate that the proposed OU BIQA method delivers superior performance to the state-of-the-art OU BIQA methods. The Matlab source code of the proposed method will be made publicly available at https://github.com/YT2015?tab=repositories.

关键词:

natural scene statistics (NSS) sparse representation Blind image quality assessment (BIQA) free-energy principle

作者机构:

  • [ 1 ] [Liu, Yutao]Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
  • [ 2 ] [Li, Xiu]Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
  • [ 3 ] [Zhang, Yongbing]Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol,Beijing Key Lab Computat Int, Engn Res Ctr Intelligent Percept & Autonomous Con, Beijing Artificial Intelligence Inst,Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Xiu]Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS

ISSN: 1551-6857

年份: 2020

期: 3

卷: 16

5 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 38

SCOPUS被引频次: 52

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:650/3902778
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司