• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Chen, Yong (Chen, Yong.) | Lu, Shuaibing (Lu, Shuaibing.)

收录:

Scopus SCIE

摘要:

Edge computing is an emerging paradigm that settles some servers on the near-user side and allows some real-time requests from users to be directly returned to the user after being processed by these servers settled on the near-user side. In this paper, we focus on saving the energy of the system to provide an efficient scheduling strategy in edge computing. Our objective is to reduce the power consumption for the providers of the edge nodes while meeting the resources and delay constraints. We propose a two-stage scheduling strategy which includes the scheduling and resource provisioning. In the scheduling stage, we first propose an efficient scheme based on the branch and bound method. In order to reduce complexity, we propose a heuristic algorithm that guarantees users' deadlines. In the resource provisioning stage, we first approach the problem by virtualizing the edge nodes into master and slave nodes based on the sleep power consumption mode. After that, we propose a scheduling strategy through balancing the resources of virtual nodes that reduce the power consumption and guarantees the user's delay as well. We use iFogSim to simulate our strategy. The simulation results show that our strategy can effectively reduce the power consumption of the edge system. In the test of idle tasks, the highest energy consumption was 27.9% lower than the original algorithm.

关键词:

task scheduling energy-saving edge computing sleep mode

作者机构:

  • [ 1 ] [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Yong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Lu, Shuaibing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Lu, Shuaibing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2020

期: 17

卷: 10

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1487/3867524
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司