摘要:
针对污水处理中关键水质参数氨氮(NH4+-N)难以在线实时准确检测且实验室取样检测时间长,精度低等问题,文中提出了基于RBF 神经网络的出水氨氮软测量模型研究。首先,选择出对出水氨氮影响较大的辅助变量去预测氨氮的变化,然后,利用梯度下降算法优化RBF 网络的结构和参数,结合北京市某污水处理厂的实测数据,对出水氨氮的预测进行仿真并与其他模型对比,结果显示,该模型具有预测误差相对较小,预测准确等优点,说明该预测模型对于氨氮的预测具有一定的实用价值。
关键词:
通讯作者信息:
电子邮件地址: