• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Chang (Peng, Chang.) | RuiWei, Lu (RuiWei, Lu.) | Kang, Olivia (Kang, Olivia.) | Kai, Wang (Kai, Wang.)

收录:

EI SCIE PubMed

摘要:

In the real industrial production process, some minor faults are difficult to be detected by multivariate statistical analysis methods with mean and variance as detection indicators due to the aging equipment and catalyst deactivation. With structural characteristics, deep neural networks can better extract data features to detect such faults. However, most deep learning models contain a large number of connection parameters between layers, which causes the training time-consuming and thus makes it difficult to achieve a fast-online response. The Broad Learning System (BLS) network structure is expanded without a retraining process and thus saves a lot of training time. Considering that different stages of the batch production process have different production characteristics, we use the Affinity Propagation (AP) algorithm to separate the different stages of the production process. This paper conducts research on a multi-stage process monitoring framework that integrates AP and the BLS. Compared with other monitoring models, the monitoring results in the penicillin fermentation process have verified the superiority of the AP-BLS model. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

Affinity propagation algorithm Broad learning system Fault detection Penicillin fermentation process

作者机构:

  • [ 1 ] [Peng, Chang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [RuiWei, Lu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Kang, Olivia]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Kai, Wang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Peng, Chang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2020

卷: 129

页码: 298-312

7 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:34

JCR分区:1

被引次数:

WoS核心集被引频次: 31

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:109/3275255
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司