• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, Qianqian (Chang, Qianqian.) | Jin, Yuhong (Jin, Yuhong.) | Jia, Miao (Jia, Miao.) | Yuan, Qiong (Yuan, Qiong.) | Zhao, Chenchen (Zhao, Chenchen.) | Jia, Mengqiu (Jia, Mengqiu.)

收录:

EI Scopus SCIE PubMed

摘要:

Transition metal phosphides have attracted increasing attention as anode materials for sodium-ion batteries (SIBs). Cobalt phosphide (CoP) has been deemed as prospective anode materials owing to its high theoretical capacity. Nevertheless, the defects of cobalt phosphides are evident. Low conductivity, the non-negligible volume expansion and aggregation of particles during sodiation/desodiation process result in poor cycling performance and rapid capacity decay, which greatly limit their applications. Herein, we designed a hollow-nanotube structure of sulfur-doped cobalt phosphide (S-CoP) nanoparticles coated by nitrogen-doped porous carbon (S-CoP@NPC), which can be successfully synthesized via an ordinary hydrothermal process followed by the low-temperature phosphorization/sulfuration treatment. The doping of sulfur element provides more active sites, meanwhile, the carbon coating largely helps to avoid the agglomeration of nanoparticles, alleviate volume expansion and improve the conductivity of materials. The S-CoP@NPC composite presents stable cycling performance, showing a discharge specific capacity of 230 mAh g(-1) over 370 cycles at 0.2 A g(-1). In addition, it also exhibits good rate capability with a discharge specific capacity of 143 mAh g(-1) at 5 A g(-1), even when the current density returns to 0.2 A g(-1), the discharge specific capacity can recover 213 mAh g(-1). Furthermore, the kinetic analysis of SCoP@NPC composite explains that the excellent cycling and rate performance benefit from the extrinsic pseudocapacitive behavior. (C) 2020 Elsevier Inc. All rights reserved.

关键词:

Sulfur-doped Capacitive contribution S-CoP@NPC nanotube N-doped porous carbon coating Sodium-ion battery

作者机构:

  • [ 1 ] [Chang, Qianqian]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 2 ] [Jia, Miao]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 3 ] [Yuan, Qiong]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 4 ] [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
  • [ 5 ] [Jin, Yuhong]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Chenchen]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China
  • [ 8 ] [Zhao, Chenchen]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jia, Mengqiu]Beijing Univ Chem Technol, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China;;[Jin, Yuhong]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China;;[Jin, Yuhong]Beijing Univ Technol, Beijing Guyue New Mat Res Inst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF COLLOID AND INTERFACE SCIENCE

ISSN: 0021-9797

年份: 2020

卷: 575

页码: 61-68

9 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:139

被引次数:

WoS核心集被引频次: 56

SCOPUS被引频次: 55

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:377/4968365
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司