• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Quan, Wei (Quan, Wei.) | Hang, Jinli (Hang, Jinli.) | Hu, Xiaohua Tony (Hu, Xiaohua Tony.)

收录:

CPCI-S

摘要:

Opinion mining has raised growing interest both in industry and academia in the past decade. Opinion role labeling (ORL) is a task to extract opinion holder and target from natural language to answer the question "who express what". Recent years, neural network based methods with additional lexical and syntactic features have achieved state-of-the-art performances in similar tasks. Moreover, Bidirectional Encoder Representations from Transformers (BERT) has shown impressive performances among a variety of natural language processing (NLP) tasks. To investigate BERT based end-to-end model in ORL, we propose models using BERT, Bidirectional Long short-term Memory (BILSTM) and Conditional Random Field (CRF) to jointly extract opinion roles (e.g., opinion holder and target). Experimental results show that our models achieve remarkable scores without using extra syntactic and/or semantic features. To our best knowledge, we are among the pioneers to successfully integrate BERT in this manner. Our work contributes to the improvement of state-of-the-art aspect-level opinion mining methods and providing strong baselines for future work.

关键词:

BERT deep learning NLP opinion mining opinion role labeling

作者机构:

  • [ 1 ] [Quan, Wei]Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
  • [ 2 ] [Hu, Xiaohua Tony]Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
  • [ 3 ] [Hang, Jinli]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Quan, Wei]Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)

ISSN: 2639-1589

年份: 2019

页码: 2438-2446

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:485/3700625
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司