• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Qili (Chen, Qili.) | Pan, Guangyuan (Pan, Guangyuan.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Yu, Ming (Yu, Ming.)

收录:

CPCI-S

摘要:

A continuous Deep Belief Network (cDBN) with two hidden layers is proposed in this paper, focusing on the problem of weak feature learning ability when dealing with continuous data. In cDBN, the input data is trained in an unsupervised way by using continuous version of transfer functions, the contrastive divergence is designed in hidden layer training process to raise convergence speed, an improved dropout strategy is then implemented in unsupervised training to realize features learning by de-cooperating between the units, and then the network is fine-tuned using back propagation algorithm. Finally, the experiments on CATS benchmark and waste water parameters forecasting show that cDBN has the advantage of higher accuracy. simpler structure and faster convergence speed than other methods.

关键词:

Deep learning Dropout Features learning Time series forecasting Unsupervised training

作者机构:

  • [ 1 ] [Chen, Qili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Chen, Qili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Qili]Beijing Informat Sci & Technol Univ, Automat Coll, Beijing 100192, Peoples R China
  • [ 6 ] [Pan, Guangyuan]Univ Waterloo, Civil & Environm Engn, Waterloo, ON, Canada
  • [ 7 ] [Yu, Ming]Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China

通讯作者信息:

  • [Chen, Qili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Chen, Qili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Chen, Qili]Beijing Informat Sci & Technol Univ, Automat Coll, Beijing 100192, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019)

ISSN: 1948-9439

年份: 2019

页码: 5977-5983

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:195/3605045
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司