• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Fei (Wang, Fei.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Huang, Jing (Huang, Jing.)

收录:

CPCI-S EI Scopus

摘要:

Simultaneous localization and mapping is the basis for solving the problem of robotic autonomous movement. Loop closure detection is vital for visual simultaneous localization and mapping. Correct detection of closed loops can effectively reduce the accumulation error of the robot poses, which plays an important role in building a globally consistent environment map. Traditional loop closure detection adopts the method of extracting handcrafted image features, which are sensitive to dynamic environments and are poor in robustness. In this paper, a method called stacked convolutional and autoencoder neural networks is proposed to automatically extract image features and perform dimensionality reduction processing. These features have multiple invariances in image transformation. Therefore, this method is robust to environmental changes. Experiments on public datasets show that the proposed method is superior to traditional methods in terms of accuracy, recall, and average accuracy, thereby validating the effectiveness of the proposed method.

关键词:

作者机构:

  • [ 1 ] [Wang, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ruan, Xiaogang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Huang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Ruan, Xiaogang]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 6 ] [Huang, Jing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Wang, Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019)

ISSN: 1757-8981

年份: 2019

卷: 563

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:299/4970499
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司