Indexed by:
Abstract:
Simultaneous localization and mapping is the basis for solving the problem of robotic autonomous movement. Loop closure detection is vital for visual simultaneous localization and mapping. Correct detection of closed loops can effectively reduce the accumulation error of the robot poses, which plays an important role in building a globally consistent environment map. Traditional loop closure detection adopts the method of extracting handcrafted image features, which are sensitive to dynamic environments and are poor in robustness. In this paper, a method called stacked convolutional and autoencoder neural networks is proposed to automatically extract image features and perform dimensionality reduction processing. These features have multiple invariances in image transformation. Therefore, this method is robust to environmental changes. Experiments on public datasets show that the proposed method is superior to traditional methods in terms of accuracy, recall, and average accuracy, thereby validating the effectiveness of the proposed method.
Keyword:
Reprint Author's Address:
Email:
Source :
2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019)
ISSN: 1757-8981
Year: 2019
Volume: 563
Language: English
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: