• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Imran, Azhar (Imran, Azhar.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Pei, Yan (Pei, Yan.) | Akhtar, Faheem (Akhtar, Faheem.) | Yang, Ji-Jiang (Yang, Ji-Jiang.) | Wang, Qing (Wang, Qing.)

收录:

CPCI-S

摘要:

A cataract is the prevailing cause of visual impairment in the modern world. The detection of cataract at early stages can lessen the risk of blindness. This study presents an automated system for cataract detection and grading based on retinal images. The system is comprised of image acquisition, preprocessing, feature extraction, classifier building, and cataract detection and grading. The preprocessing steps such as green channel extraction, histogram equalization, and top-bottom hat transformation are used to improve the quality of retinal images. The wavelet and texture features are extracted from the fundus image for building a classifier. A combination of SOM (Self-Organizing Maps) and RBF (Radial Basis Function) neural network has been taken to obtain better prediction accuracy of cataract. SOM-RBF neural network is evaluated on Tongren dataset with 8030 subjects categorized into four classes: Normal, Mild, Mature, and Severe. The proposed method achieved 95.3% and 91.7% of accuracy for cataract detection and grading tasks, respectively. The experimental results indicate that the proposed method performs better than the traditional RBF and other baseline methods.

关键词:

Bioinfotmatics Cataract Detection Cataract Grading Image Classification Retinal Images

作者机构:

  • [ 1 ] [Imran, Azhar]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Akhtar, Faheem]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Pei, Yan]Univ Aizu, Comp Sci Div, Fukushima 9658580, Japan
  • [ 5 ] [Yang, Ji-Jiang]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
  • [ 6 ] [Wang, Qing]Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China

通讯作者信息:

  • [Imran, Azhar]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019)

年份: 2019

页码: 2626-2632

语种: 英文

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:176/3609240
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司