• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Yingbo (Xie, Yingbo.) | Hou, Ying (Hou, Ying.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

CPCI-S

摘要:

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) is proved to have a significant advantage dispose of multi-objective optimization problems (MOPs) since its introduction. However, initial MOEA/D worsen diversity, Furthermore, it is easy to generate an inferior solution by using simulated binary crossover operation. Therefore, an improved MOEA/D with an enhanced differential evolution (MOEA/D-EDE) is proposed to solve above problems. The newness and advantages of this proposed MOEA/D-EDE include the following two aspects. First, several differential evolution operators are used to replace crossover operator in the original MOEA/D. Second, MOEA/D-EDE introduces an elite archive strategy, thereby significantly increases the convergence speed while ensuring the diversity. Finally, the proposed MOEA/D-EDE is studied on MOPs compared with several MOEA/D variants and other algorithms. Empirical results display that MOEA/D-EDE to enhance the performance.

关键词:

Multi-objective optimization MOEA/D Elite archive Differential evolution Mutation strategy

作者机构:

  • [ 1 ] [Xie, Yingbo]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Hou, Ying]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116620, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xie, Yingbo]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019)

年份: 2019

页码: 2245-2251

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1034/4291112
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司