• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Shuaining (Xie, Shuaining.) | Yu, Jing (Yu, Jing.) | Liu, Tianjiao (Liu, Tianjiao.) | Chang, Qing (Chang, Qing.) | Niu, Lijuan (Niu, Lijuan.) | Sun, Weidong (Sun, Weidong.)

收录:

CPCI-S

摘要:

Thyroid tumor is a common clinical disease. Fully automated computer-aided diagnosis of thyroid nodules has important clinical significance. However, most of the previous works focused on the classification of nodules, benign or malignant. but how to locate the nodules in the ultrasound images is rarely studied. This paper focuses on the problem of thyroid nodule detection, aiming to achieve a fully automated method for delineating the nodule bounding box from the thyroid ultrasound image. We propose a nodule detection algorithm based on the convolutional neural network for this task. We explore the performance of nodule detection in three aspects: multi-scale prediction architecture design, loss function design and post-processing method. This method is evaluated on clinical data and compared to the ground truth labeled by doctors. The experimental results show that this proposed method can achieve 88.08% AP with 90.08% overall recall.

关键词:

convolutional neural network detection ultrasound image thyroid nodule

作者机构:

  • [ 1 ] [Xie, Shuaining]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
  • [ 2 ] [Liu, Tianjiao]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
  • [ 3 ] [Sun, Weidong]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
  • [ 4 ] [Yu, Jing]Beijing Univ Technol, Colg Comp Sci & Technol, Beijing, Peoples R China
  • [ 5 ] [Chang, Qing]Chinese Acad Med Sci & Peking Union Med Coll, Dept Ultrasound, Natl Canc Ctr, Canc Hosp, Beijing, Peoples R China
  • [ 6 ] [Niu, Lijuan]Chinese Acad Med Sci & Peking Union Med Coll, Dept Ultrasound, Natl Canc Ctr, Canc Hosp, Beijing, Peoples R China

通讯作者信息:

  • [Xie, Shuaining]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019)

ISSN: 2156-2318

年份: 2019

页码: 1442-1446

语种: 英文

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:323/4285375
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司