• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Hongfei (Xue, Hongfei.) | Jiang, Wenjun (Jiang, Wenjun.) | Miao, Chenglin (Miao, Chenglin.) | Yuan, Ye (Yuan, Ye.) | Ma, Fenglong (Ma, Fenglong.) | Ma, Xin (Ma, Xin.) | Wang, Yijiang (Wang, Yijiang.) | Yao, Shuochao (Yao, Shuochao.) | Xu, Wenyao (Xu, Wenyao.) | Zhang, Aidong (Zhang, Aidong.) | Su, Lu (Su, Lu.)

收录:

CPCI-S EI Scopus

摘要:

In recent years, significant research efforts have been spent towards building intelligent and user-friendly IoT systems to enable a new generation of applications capable of performing complex sensing and recognition tasks. In many of such applications, there are usually multiple different sensors monitoring the same object. Each of these sensors can be regarded as an information source and provides us a unique "view" of the observed object. Intuitively, if we can combine the complementary information carried by multiple sensors, we will be able to improve the sensing performance. Towards this end, we propose DeepFusion, a unified multi-sensor deep learning framework, to learn informative representations of heterogeneous sensory data. DeepFusion can combine different sensors' information weighted by the quality of their data and incorporate cross-sensor correlations, and thus can benefit a wide spectrum of IoT applications. To evaluate the proposed DeepFusion model, we set up two real-world human activity recognition testbeds using commercialized wearable and wireless sensing devices. Experiment results show that DeepFusion can outperform the state-of-the-art human activity recognition methods.

关键词:

Sensor Fusion Deep Learning Internet of Things

作者机构:

  • [ 1 ] [Xue, Hongfei]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 2 ] [Jiang, Wenjun]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 3 ] [Miao, Chenglin]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 4 ] [Ma, Fenglong]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 5 ] [Ma, Xin]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 6 ] [Wang, Yijiang]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 7 ] [Xu, Wenyao]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 8 ] [Su, Lu]SUNY Buffalo, Buffalo, NY 14260 USA
  • [ 9 ] [Yuan, Ye]Beijing Univ Technol, Beijing, Peoples R China
  • [ 10 ] [Yao, Shuochao]Univ Illinois, Urbana, IL USA
  • [ 11 ] [Zhang, Aidong]Univ Virginia, Charlottesville, VA USA

通讯作者信息:

  • [Su, Lu]SUNY Buffalo, Buffalo, NY 14260 USA

查看成果更多字段

相关关键词:

来源 :

PROCEEDINGS OF THE 2019 THE TWENTIETH ACM INTERNATIONAL SYMPOSIUM ON MOBILE AD HOC NETWORKING AND COMPUTING (MOBIHOC '19)

年份: 2019

页码: 151-160

语种: 英文

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 39

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:175/4525172
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司