• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Meng (Li, Meng.) | Yang, Le (Yang, Le.) | Yu, F. Richard (Yu, F. Richard.) | Wu, Wenjun (Wu, Wenjun.) | Wang, Zhuwei (Wang, Zhuwei.) | Zhang, Yanhua (Zhang, Yanhua.) (学者:张延华)

收录:

CPCI-S

摘要:

Recent advances in Internet of Things (IoT) provide plenty of opportunities for various areas. Nevertheless, the machine-to-machine (M2M) communications-based IoT develops rapidly but suffers from extra energy consumption, large data transmission latency as well as overmuch network cost, because various of machine-type communication devices (MTCDs) are deployed in the network. To meet the requirements of energy efficient M2M communications, in this paper, we introduce a promising technology named as mobile edge computing (MEC), and propose a performance optimization framework with MEC for M2M communications network based on deep reinforcement learning (DRL). According to dynamic decision process by DRL, the appropriate access networks and the computing servers can be determined and selected with the minimum system cost, which includes lower network cost, time cost and energy consumption for data transmission and computing tasks execution. Extensive simulation results with different system parameters show that our proposed framework can effectively improve the system performance for M2M communications compared to the existing schemes.

关键词:

deep reinforcement learning energy efficiency Machine-to-machine communications mobile edge computing performance optimization

作者机构:

  • [ 1 ] [Li, Meng]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 2 ] [Zhang, Yanhua]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China
  • [ 3 ] [Li, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Yang, Le]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Wu, Wenjun]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang, Zhuwei]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 7 ] [Zhang, Yanhua]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 8 ] [Yu, F. Richard]Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada

通讯作者信息:

  • [Li, Meng]Beijing Univ Technol, Beijing Lab Adv Informat Networks, Beijing, Peoples R China;;[Li, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)

ISSN: 2334-0983

年份: 2019

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:393/3699705
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司