• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Huang, Mengmeng (Huang, Mengmeng.) | Yao, Kelu (Yao, Kelu.) | Wei, Lan (Wei, Lan.) | Fei, Xiaolu (Fei, Xiaolu.) | Qing, Wang (Qing, Wang.)

收录:

CPCI-S EI Scopus

摘要:

Gel is a post-operative cleaning material with antibacterial effect, which helps patients recover after surgery. It is more and more popular in surgery, but it is still controversial in use. This study collected the electronic medical records of patients in a hospital for nearly three years, using a combination of a variety of special selection methods to process data and using random forest, support vector machine, LightGBM and XGBoost and other machine learning methods to predict the suitability of patients. The results show that polysaccharide gel is not suitable for all people, whether to use it should consider different situations. This paper has studied the applicability of medical gels to patients, and established a predictability model to provide data support for the clinical application of this expensive medical material.

关键词:

medical gel prediction model electronic medical record applicability

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Huang, Mengmeng]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yao, Kelu]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wei, Lan]Capital Med Univ, Informat Ctr, Xuanwu Hosp, Beijing 100053, Peoples R China
  • [ 5 ] [Fei, Xiaolu]Capital Med Univ, Informat Ctr, Xuanwu Hosp, Beijing 100053, Peoples R China
  • [ 6 ] [Qing, Wang]Tsinghua Univ, Res Inst Informat & Technol, Beijing, Peoples R China

通讯作者信息:

  • [Fei, Xiaolu]Capital Med Univ, Informat Ctr, Xuanwu Hosp, Beijing 100053, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 2

ISSN: 0730-3157

年份: 2019

页码: 423-428

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:228/4515754
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司