• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ren, Kun (Ren, Kun.) | Fan, Chunqi (Fan, Chunqi.) | Meng, Lisha (Meng, Lisha.) | Huang, Long (Huang, Long.)

收录:

CPCI-S EI

摘要:

The developments of generative adversarial networks (GANs) make it possible to fill missing regions in broken images with convincing details. However, many existing approaches fail to keep the inpainted content and structures consistent with their surroundings. In this paper, we propose a GAN-based inpainting model which can restore the semantic damaged images visually reasonable and coherent. In our model, the generative network has an autoencoder frame and the discriminator network is a CNN classifier. Different from the classic autoencoder, we design a novel bottleneck layer in the middle of the autoencoder which is comprised of four dense-net blocks and each block contains vanilla convolution layers and dilated convolution layers. The kernels of dilated convolution are spread out and result in an effective enlargement of the receptive field. Thus the model can capture more widely semantic information to ensure the consistency of inpainted images. Furthermore, the multiplex of different level's features in each dense-net block can help the model understand the whole image better to produce a convincing image. We evaluate our model over the public datasets CelebA and Stanford Cars with random position masks of different ratios. The effectiveness of our model is verified by qualitative and quantitative experiments.

关键词:

Autoencoder Densenet Dilated convolution Generative adversarial networks Image inpainting

作者机构:

  • [ 1 ] [Ren, Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Chunqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Meng, Lisha]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Long]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Ren, Kun]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China
  • [ 6 ] [Fan, Chunqi]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China
  • [ 7 ] [Meng, Lisha]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China
  • [ 8 ] [Huang, Long]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China
  • [ 9 ] [Ren, Kun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 10 ] [Fan, Chunqi]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 11 ] [Meng, Lisha]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 12 ] [Huang, Long]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 13 ] [Ren, Kun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 14 ] [Fan, Chunqi]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 15 ] [Meng, Lisha]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 16 ] [Huang, Long]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Ren, Kun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Ren, Kun]Minist Educ, Engn Res Ctr Digital Commun, Beijing 100124, Peoples R China;;[Ren, Kun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China;;[Ren, Kun]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VI

ISSN: 0277-786X

年份: 2019

卷: 11187

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:138/3603132
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司