• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Yunkun (Bai, Yunkun.) | Sun, Guangmin (Sun, Guangmin.) (学者:孙光民) | Ge, Yi (Ge, Yi.) | Zhang, Yuanzhi (Zhang, Yuanzhi.) | Li, Yu (Li, Yu.)

收录:

CPCI-S

摘要:

The extraction of urban impervious surface information plays a key role in the studies of urbanization and its related environmental issues. Optical and SAR remote sensing provides complementary information to improve the accuracy of impervious mapping. However, the fusing of information acquired by different sensors is challenging. Optical and SAR features have distinct characteristics, and require different classification strategy and classification types. In this study, a strategy of fusing multi-spectral optical and polarimetric SAR data at decision-level is proposed. Features are extracted from optical and SAR data, then staked auto-encoder is applied to achieve the land use and land cover classification separately. D-S evidence theory is used to fuse the classification result and the imperious surface map is derived. The experiment was conducted in a highly complex urban area of Hong Kong and the results proves the soundness of the method.

关键词:

impervious surface synthetic aperture radar land use and land cover decision-level fusion multi-spectrum

作者机构:

  • [ 1 ] [Bai, Yunkun]Beijing Univ Technol, Fac Informat Technol, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Guangmin]Beijing Univ Technol, Fac Informat Technol, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Yi]Beijing Univ Technol, Fac Informat Technol, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yu]Beijing Univ Technol, Fac Informat Technol, 100 PingLeYuan, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Yuanzhi]Chinese Acad Sci, Natl Astron Observ, 20 Datun Rd, Beijing 100101, Peoples R China

通讯作者信息:

  • [Li, Yu]Beijing Univ Technol, Fac Informat Technol, 100 PingLeYuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)

ISSN: 2153-6996

年份: 2019

页码: 6336-6339

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:355/4295112
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司