• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Lingling (Shi, Lingling.) | He, Dongzhi (He, Dongzhi.)

收录:

CPCI-S EI Scopus

摘要:

Faced with massive data and the complexity of query requirements, how to improve the query speed of database has become a research hotspot. This paper analyses the artificial intelligence algorithms, genetic ant colony algorithm (GA-ACA), which is used for database query optimization. The GA-ACA is prone to decrease the diversity in multi-connection search of database, which results in inefficiency and local extremum. To solve this problem, our paper proposes an improvement algorithm on multi-connection query. Based on the premise of population diversity, the algorithm analyses the population entropy and variance. And it chooses the equal probability crossover or the unequal probability crossover according to the evolutionary state, which effectively avoids the phenomenon of local optimum due to the iteration of similar individuals. This paper improves the crossover operation and redefines the generation mode of new population. Experiments show that the improved algorithm avoids the local optimal solution to some extent, meanwhile shortens the searching time.

关键词:

crossover operation database query optimization Genetic ant colony algorithm Population diversity random search algorithm

作者机构:

  • [ 1 ] [Shi, Lingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [He, Dongzhi]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Shi, Lingling]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ICBDC 2019: PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON BIG DATA AND COMPUTING

年份: 2019

页码: 29-33

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:334/3650337
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司