• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Quan, Pei (Quan, Pei.) | Shi, Yong (Shi, Yong.) | Lei, Minglong (Lei, Minglong.) | Leng, Jiaxu (Leng, Jiaxu.) | Zhang, Tianlin (Zhang, Tianlin.) | Niu, Lingfeng (Niu, Lingfeng.)

收录:

CPCI-S EI Scopus

摘要:

Convolutional neural networks have been shown successful in extracting features from images and texts. However, it is difficult to apply convolutional neural networks directly on ubiquitous graph data since the graph data lies in an irregular structure. A significant number of researchers engrossed themselves in studying graph convolutional networks transformed from Euclidean domain. Previous graph convolutional networks overviews mainly focus on reviewing recent methods in a comprehensive ways. In this survey, we review the convolutional networks from the perspective of receptive fields. Roughly, the convolutional networks fall into three main categories: spectral based methods, sampling based methods and attention based methods. We analysis the differences of these methods and propose three potential directions for future research of graph convolutional networks.

关键词:

graph analysis deep learning receptive fields graph convolutional networks

作者机构:

  • [ 1 ] [Quan, Pei]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
  • [ 2 ] [Leng, Jiaxu]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Tianlin]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
  • [ 4 ] [Shi, Yong]Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
  • [ 5 ] [Niu, Lingfeng]Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
  • [ 6 ] [Lei, Minglong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Quan, Pei]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE WORKSHOPS (WI 2019 COMPANION)

年份: 2019

页码: 106-110

语种: 英文

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:216/4570668
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司