收录:
摘要:
GaN nanomaterials, as one of the most important third-generation semiconductor materials, have attracted wide attention. In this study, GaN nanowires with square cross section were successfully prepared by microwave plasma chemical vapor deposition system. The diameters of nanowires are from 300 to 500 nm and the lengths from 15 to 20 mu m. The results show that the cross section of nanowires could be transformed from triangle into square by adjusting the ratio of Mg to Ga in source materials. X-ray diffraction(XRD)result indicate that the structure of GaN nanowires are agree with the hexagonal wurtzite. X-ray photoelectron spectroscopy (XPS) rusult show that a certain amount of Mg and O impurities incoporated in the square-shaped GaN nanowires. Transmission electron microscopy (TEM) result suggested that square-shaped GaN nanowires had high crystallinity with a growth direction of [0 (1) over bar 10]. The ratio of source materials- and time-depented growth mechanism was also studied. It was suggested that the transformation of the cross section from triangle to square structure should be derived from the growth mechanism change from vapor-liquid-solid(VLS)process to vapor-solid(VS)process. The doped Mg increased the growth rate of the nanowires sidewalls, which led to a symmetrically growth of GaN nanowires along the twin boundaries. GaN nanowires gradually transformed to square structure by auto-catalytic growth. Moreover, the property of field emission were further investigated. The results showed that the turn-on electric field of square-shaped GaN nanowires was 5.2 V/m and a stable field emission property at high electric field. This research provides a new method for the preparation of squareshaped GaN nanowires and a prospective way for the design and fabrication of novel nano-scale devices.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACTA PHYSICA SINICA
ISSN: 1000-3290
年份: 2020
期: 16
卷: 69
1 . 0 0 0
JCR@2022
ESI学科: PHYSICS;
ESI高被引阀值:100