• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fan, Gaoyang (Fan, Gaoyang.) | Zhu, Cui (Zhu, Cui.) | Zhu, Wenjun (Zhu, Wenjun.)

收录:

CPCI-S EI

摘要:

Text classification is a fundamental task in natural language processing. This task is widely concerned and applied. However, previous methods mainly use traditional static word embedding, but static word embedding could not deal with the problem of polysemy. For this reason, we propose to utilize contextualized BERT word embedding to effectively encode the input sequence and then use the temporal convolutional module which simply computes a 1-D convolution to extract high-level features, finally, the max-pooling layer retains the most critical features for text classification. We conduct experiments on six commonly used large-scale text categorization datasets, including sentiment analysis, problem classification and topic classification tasks. Due to the limitation of BERT processing long text, we propose an effective truncation method. Experimental results show that our proposed method outperforms previous methods.

关键词:

BERT contextualized word embedding convolutional neural network text classification

作者机构:

  • [ 1 ] [Fan, Gaoyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Cui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhu, Wenjun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Fan, Gaoyang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE

ISSN: 0277-786X

年份: 2019

卷: 11321

语种: 英文

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:481/3700320
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司