• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cai, Yiheng (Cai, Yiheng.) | Guo, Yajun (Guo, Yajun.) | Lang, Shinan (Lang, Shinan.) | Liu, Jiaqi (Liu, Jiaqi.) | Hu, Shaobin (Hu, Shaobin.)

收录:

EI Scopus SCIE

摘要:

Hyperspectral images (HSIs) contain a significant amount of spectral and spatial information, together with underlying redundancy and noise, causing difficulty in HSI-processing tasks. State-of-the-art deep learning methods have obtained unprecedented performance in HSI classification and analysis. However, these architectures face challenges of declining accuracy and lengthy training times. We propose a framework to mitigate these issues, composed of a densely connected spectral block and preactivation bottleneck residual spatial block to separately learn spectral and spatial features. The spectral extraction block can involve more spectral features with the increase of the network depth, and it solves the problem of lengthy training time in traditional methods, and its densely connected structure achieves higher accuracy. In the spatial extraction block, we use the improved residual structure and introduce batch normalization and a parametric rectified linear unit before convolutional layers to preactivate the network, reducing parameters, and overfitting. In experiments using three classification approaches for comparison, it can be observed that even compared to the state-of-the-art method: spectral-spatial residual network for HSI classification, the proposed model shows improvements in accuracy of 0.49%, 0.19%, and 0.35% on the Indian Pines, University of Pavia, and Kennedy Space Center datasets, respectively. The experimental results reveal that the model obtains better classification results while effectively decreasing the training time. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

关键词:

three-dimensional deep learning hyperspectral image classification remote sensing

作者机构:

  • [ 1 ] [Cai, Yiheng]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China
  • [ 2 ] [Guo, Yajun]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China
  • [ 3 ] [Lang, Shinan]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China
  • [ 4 ] [Liu, Jiaqi]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China
  • [ 5 ] [Hu, Shaobin]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China

通讯作者信息:

  • [Cai, Yiheng]Beijing Univ Technol, Coll Informat & Commun Engn, Sch Informat & Commun, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF APPLIED REMOTE SENSING

ISSN: 1931-3195

年份: 2020

期: 3

卷: 14

1 . 7 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:99

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:188/4516336
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司