收录:
摘要:
A key approach for reducing motor impairment and regaining independence after spinal cord injuries or strokes is frequent and repetitive functional training. A compatible exoskeleton (Co-Exos II) is proposed for the upper-limb rehabilitation. A compatible configuration was selected according to optimum configuration principles. Four passive translational joints were introduced into the connecting interfaces to adapt the glenohumeral joint (GH) movements and improve the compatibility of the exoskeleton. This configuration of the passive joints could reduce the influence of gravity of the exoskeleton device and the upper extremities. A Co-Exos II prototype was developed and still owned a compact volume. A new approach was presented to compensate the vertical GH movements. The shoulder closed-loop was simplified as a guide-bar mechanism. The compatible models of this loop were established based on the kinematic model of GH. The compatible experiments were completed to verify the kinematic models and analyze the human-machine compatibility of Co-Exos II. The theoretical displacements of the translational joints were calculated by the kinematic model of the shoulder loop. The passive joints exhibited good compensations for the GH movements through comparing the theoretical and measured results, especially vertical GH movements. Co-Exos II showed good human-machine compatibility for upper limbs.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
2019 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR)
ISSN: 2325-033X
年份: 2019
页码: 240-245
语种: 英文
归属院系: