• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Yujian (Li, Yujian.) | Shan, Chuanhui (Shan, Chuanhui.)

收录:

CPCI-S EI Scopus

摘要:

Deep learning has made a great deal of success in processing images, audios, and natural languages. With the growth of deep learning, how to describe deep neural networks unifiedly is becoming an important issue. We first formalize neural networks mathematically with their directed graph representations, and prove a generation theorem about the induced networks of connected directed acyclic graphs. Then, we set up a unified framework for deep learning with capsule networks. This capsule framework could simplify the description of existing deep neural networks, and provide a theoretical basis of graphic designing and programming techniques for deep learning models, thus would be of great significance to the advancement of deep learning.

关键词:

Formalization Capsule network Generation theorem Capsule framework Induced network

作者机构:

  • [ 1 ] [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Shan, Chuanhui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • 李玉鑑

    [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

COGNITIVE SYSTEMS AND SIGNAL PROCESSING, PT II

ISSN: 1865-0929

年份: 2019

卷: 1006

页码: 231-242

语种: 英文

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:33/3918854
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司