• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Maoshen (Liu, Maoshen.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Wu, Li (Wu, Li.) | Xu, Xin (Xu, Xin.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

CPCI-S EI Scopus

摘要:

Smoke detection is the key to industrial safety warnings and fire prevention, such as flare smoke detection in chemical plants and forest fire warning. Due to the complex changes in smoke color, texture and shape, it is difficult to identify the smoke in the image. Recently, more and more scholars have paid attention to the research of smoke detection. In order to solve the above problems, we propose a convolutional neural network structure designed for smoke characteristics. The characteristics of smoke are only complicated in simple features, and no deep semantic structure information needs to be extracted. Therefore, there is no performance improvement in deepening the depth of the network. We use a 10-layer convolutional neural network to hop the features of the first layer of convolution extraction to the back layer to increase the network's ability to extract simple features. The experimental results show that our convolutional neural network model has fewer parameters than the existing deep learning method, and the accuracy rate in the smoke database is optimal.

关键词:

Deep neural networks Image classification Smoke detection Deep learning

作者机构:

  • [ 1 ] [Liu, Maoshen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xu, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Maoshen]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 7 ] [Gu, Ke]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 8 ] [Wu, Li]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 9 ] [Xu, Xin]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 10 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

通讯作者信息:

  • [Liu, Maoshen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Liu, Maoshen]Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

DIGITAL TV AND MULTIMEDIA COMMUNICATION

ISSN: 1865-0929

年份: 2019

卷: 1009

页码: 217-226

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:167/4508643
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司