• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Hong (Lu, Hong.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Yang, Chen (Yang, Chen.) | Hu, Yunceng (Hu, Yunceng.)

收录:

CPCI-S EI Scopus

摘要:

Clustering the spatial feature of the object region plays an important role in object modeling, detecting and tracking etc. However, many clustering methods adopt the pre-set cluster number, which cannot adapt to full automatic system. In this paper, a novel frame work for adaptively determining the number of clusters is proposed based on hierarchically kernel cutting. We firstly extract the value contour of object region and rank the peaks of the contour in descending order. And then we utilize a group of gauss kernels located at peaks to sequentially segment the contour into several subintervals. When the residual area being not cut is lower than a threshold value, the cutting process is compulsively terminated. Furthermore, we merge adjacent kernels according to the intersection area ratio and take the retained kernel number as the cluster number k. We finally classify the object region with k and K-means algorithm. Both theoretical reasoning and experimental comparing illustrate the proposed method is rational, adaptive and efficient.

关键词:

Object region classification Sequentially cutting Gauss kernel Adaptive cluster number

作者机构:

  • [ 1 ] [Lu, Hong]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China
  • [ 2 ] [Yang, Chen]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China
  • [ 3 ] [Hu, Yunceng]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 顾锞

    [Lu, Hong]Nanjing Inst Technol, Sch Automat, Nanjing 211167, Jiangsu, Peoples R China;;[Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

来源 :

DIGITAL TV AND MULTIMEDIA COMMUNICATION

ISSN: 1865-0929

年份: 2019

卷: 1009

页码: 433-443

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:194/4518019
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司