摘要:
本文研究了基于非负矩阵分解(Nonnegative Matrix Factorization,NMF)的语音特征波形(Characteristic Waveform,CW)分解方法,通过比较得出基于K-L散度的NMF方法优于基于欧氏距离的NMF方法和局部非负矩阵分解方法。文中将特征波形按照基音周期的统计分布分为6类,为了降低复杂度,本文提出了一种基矢量的Mel刻度分带初始化方法,并与K-L散度结合进行了CW的NMF分解,同时与FIR滤波和奇异值分解方法进行了比较。
关键词:
通讯作者信息:
电子邮件地址: