• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

韩红桂 (韩红桂.) (学者:韩红桂) | 乔俊飞 (乔俊飞.) (学者:乔俊飞)

摘要:

针对传统自组织神经网络神经元数必须预先确定的问题,提出了一种增长型自组织神经网络(Growing SOM)算法,该算法使得神经网络的结构可以根据实际需要在线修改。将其与模糊算法相结合,从而模糊控制能够在线调整模糊推理规则,使模糊规则数的确定摆脱人为经验的局限。仿真结果表明,本文提出的算法在解决非线性逼近问题上优越于传统自组织神经网络算法。

关键词:

模糊推理系统 非线性逼近 自组织神经网络

作者机构:

  • [ 1 ] 北京工业大学电子信息与控制工程学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2007

语种: 中文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:619/3878577
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司