• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Jia, Ting (Jia, Ting.) | Yang, Xun (Yang, Xun.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Huo, Lina (Huo, Lina.)

收录:

CPCI-S EI Scopus

摘要:

With the rapid evolution of social networks, the increasing user intention gap and visual semantic gap both bring great challenge for users to access satisfied contents. It becomes promising to investigate users' customized multimedia recommendation. In this paper, we propose cross-modal collaborative manifold propagation ( CMP) for image recommendation. CMP leverages users' interest distribution to propagate images' user records, which lets users know the trend from others and produces interest-aware image candidates upon users' interests. Visual distribution is investigated simultaneously to propagate users' visual records along dense semantic visual manifold. Visual manifold propagation helps to estimate semantic accurate user-image correlations for the candidate images in recommendation ranking. Experimental performance demonstrate the collaborative user-image inferring ability of CMP with effective user interest manifold propagation and semantic visual manifold propagation in personalized image recommendation.

关键词:

manifold propagation image recommendation collaborative learning social preference Cross-modal

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Jia, Ting]Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] [Wu, Lifang]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Yang, Xun]Natl Univ Singapore, Singapore, Singapore
  • [ 5 ] [Huo, Lina]Hebei Normal Univ, Shijiazhuang, Hebei, Peoples R China

通讯作者信息:

  • 毋立芳

    [Wu, Lifang]Beijing Univ Technol, Beijing, Peoples R China;;[Huo, Lina]Hebei Normal Univ, Shijiazhuang, Hebei, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL

年份: 2019

页码: 344-348

语种: 英文

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:319/4971490
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司