• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Too, Edna C. (Too, Edna C..) | Li, Yujian (Li, Yujian.) | Njuki, Sam (Njuki, Sam.) | Yamak, Peter T. (Yamak, Peter T..) | Zhang, Ting (Zhang, Ting.)

收录:

CPCI-S EI Scopus

摘要:

Activation functions play an important role in deep learning and its choice has a significant effect on the training and performance of a model. In this study, a new variant of Exponential Linear Unit (ELU) activation called Transformed Exponential Linear Unit (TELU) is proposed. An empirical evaluation is done to determine the effectiveness of the new activation function using state-of-the-art deep learning architectures. From the experiments, TELU activation function tends to work better than the conventional activations functions on deep models across a number of benchmarking datasets. TELU achieves superior classification accuracy on Cifar-10, SVHN and Caltech-101 dataset on state-of-the-art deep learning models. Additionally, it shows superior AUROC, MCC, and F1-score on the STL-10 dataset. This proves that TELU can be successfully applied in deep learning for image classification.

关键词:

Activation Function Convolution Neural Network Deep Learning Exponential Linear Unit

作者机构:

  • [ 1 ] [Too, Edna C.]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yujian]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Njuki, Sam]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 4 ] [Yamak, Peter T.]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Ting]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

  • [Too, Edna C.]Beijing Univ Technol, 100 Pingleyuan, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019)

年份: 2019

页码: 55-62

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:355/4296817
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司