• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Leilei (Li, Leilei.) | Yuan, Yue (Yuan, Yue.) | Li, Mi (Li, Mi.) (学者:栗觅) | Xu, Hongpei (Xu, Hongpei.) | Li, Richeng (Li, Richeng.) | Lu, Shengfu (Lu, Shengfu.)

收录:

CPCI-S EI Scopus

摘要:

Facial expression recognition is still a problem at present, especially in the case of individual independence. On the one hand, due to the influence of morphological changes, ethnic differences and other factors, the expression of individual expressions varies greatly. On the other hand, there is currently no publicly available large-scale dataset that can support deep neural networks. To this end, this paper proposes cross-connection and spatial pyramid pooling convolutional neural network. The model not only uses spatial pyramid pooling for high-level feature enhancement, but also combines cross-connection and spatial pyramid pooling to extract important low-level features. Finally the different levels of features are connected to improve the generalization performance of the model. We validate our approach in four widely used public expression datasets (CK+, JAFFE, MMI, NimStim). Compared to other facial expression recognition methods, our proposed method achieves comparable or superior results. In the case of subject independence, the model achieved a good result with 97.41% accuracy on the CK+ dataset.

关键词:

Facial Expression Recognition Label Smoothing Convolutional Neural Networks Cross-Connection Spatial Pyramid Pooling

作者机构:

  • [ 1 ] [Li, Leilei]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 2 ] [Yuan, Yue]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 3 ] [Li, Mi]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 4 ] [Xu, Hongpei]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 5 ] [Li, Richeng]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 6 ] [Lu, Shengfu]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 7 ] [Li, Leilei]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 8 ] [Yuan, Yue]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 9 ] [Li, Mi]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 10 ] [Xu, Hongpei]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 11 ] [Li, Richeng]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China
  • [ 12 ] [Lu, Shengfu]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China

通讯作者信息:

  • 栗觅

    [Li, Mi]Beijing Univ Technol, Dept Automat, Fac Informat Technol, 100 Ping Le Yuan, Beijing 100024, Peoples R China;;[Li, Mi]Beijing Univ Technol, Beijing Int Collaborat Base Brain Informat & Wisd, 100 Ping Le Yuan, Beijing 100024, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019)

年份: 2019

页码: 85-92

语种: 英文

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:421/3909439
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司