• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Haoyu (Huang, Haoyu.) | Chang, Wen-Shao (Chang, Wen-Shao.) | Chen, Ke (Chen, Ke.)

收录:

CPCI-S EI

摘要:

This study explores the dynamic behaviours of shape memory alloy (SMA)-dowelled timber connection with densified veneer wood (DVW) reinforcement, so as to provide resilience to the timber structure. The performance of the SMA bar under cyclic bending is firstly studied, and it is found that it has superior self-centring effect and large ductility compared with that of the steel. By testing the SMA-dowelled timber connections and the conventional steel-dowelled timber connections under cyclic loading at various displacement levels, it is shown that SMA can provide better self-centring effect and larger ductility to the connection. The DVW reinforcement can enhance the self-centring and improve the strength. However, the energy dissipation capacity of the SMA-dowelled timber connection is lower than that of the steel-dowelled connection because of the smaller hysteresis area of the SMA. In the further study, the effect of the temperature control on SMA should be investigated to improve the damping capacity of the SMAdowelled timber connection.

关键词:

作者机构:

  • [ 1 ] [Huang, Haoyu]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Chang, Wen-Shao]Univ Sheffield, Sch Architecture, Sheffield S10 2TN, S Yorkshire, England
  • [ 3 ] [Chen, Ke]Univ Bath, Dept Architecture & Civil Engn, Bath BA2 7AY, Avon, England
  • [ 4 ] [Chen, Ke]China Gezhouba Grp Co Ltd, Wuhan 430033, Hubei, Peoples R China

通讯作者信息:

  • [Huang, Haoyu]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

1ST INTERNATIONAL CONFERENCE ON ADVANCES IN CIVIL ENGINEERING AND MATERIALS (ACEM1) AND 1ST WORLD SYMPOSIUM ON SUSTAINABLE BIO-COMPOSITE MATERIALS AND STRUCTURES (SBMS1)

ISSN: 2261-236X

年份: 2019

卷: 275

语种: 英文

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:970/3902323
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司