• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Dao-Hang (Li, Dao-Hang.) | Shang, De-Guang (Shang, De-Guang.) (Scholars:尚德广)

Indexed by:

CPCI-S EI Scopus

Abstract:

The fatigue damage behavior was experimentally investigated in different axial-torsional thermo-mechanical loading conditions for Ni-based superalloy GH4169. The strain controlled tests were carried out with the same von Mises equivalent mechanical strain amplitude of 0.8% in the temperature range from 360 degrees C to 650 degrees C. The results show that the fatigue life is drastically reduced when the axial mechanical strain and the temperature are in-phase, which can be due to that the creep damage is induced by the tensile stress at high temperature. Moreover, the fatigue life is further decreased when the axial mechanical strain and the shear strain are out-of-phase, which can be attributed to that the non-proportional hardening can increase the creep and the oxidation damages. Furthermore, the tensile stress is crucial to the nucleation of creep cavities at high temperature compared with the shear stress. The tensile and shear stresses all can increase the creep damage under fatigue loading at high temperature. In addition, the oxidation damage can be induced during cyclic loading at high temperature, and it can be increased by the tensile mean stress caused in non-isothermal loading.

Keyword:

Author Community:

  • [ 1 ] [Li, Dao-Hang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Shang, De-Guang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 尚德广

    [Shang, De-Guang]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018)

ISSN: 2261-236X

Year: 2018

Volume: 165

Language: English

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:351/5276497
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.