• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Nan (Zhang, Nan.) (学者:张楠) | Jin, Xiaoning (Jin, Xiaoning.) | Li, Xiaowei (Li, Xiaowei.)

收录:

CPCI-S EI Scopus

摘要:

In the past few years, text detection in natural scenes has attracted increasing attention due to many real-world applications. Most existing methods only detect horizontal or nearly horizontal texts and have complicated processes. When using the neural network to detect text in the image, some ambiguity and small words are easy to be ignored because of many pooling operations. Therefore, this paper proposes an end-to-end trainable neural network for detecting multi-oriented text lines or words in natural scene images. The network fuses multi-level features and is guided by deep supervision during training. In this way, richer hierarchical representations can be learned automatically. The network makes two kinds of predictions: text/no text classification and location regression, thus we can directly locate multi-oriented words or text lines without other unnecessary intermediate steps. Experimental results on the ICDAR 2015 datasets and MSRA-TD500 datasets have proven that the proposed method outperforms the state-of-the-art methods by a noticeable margin on F-score.

关键词:

Multi-oriented text Deep supervision Scene image

作者机构:

  • [ 1 ] [Zhang, Nan]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Jin, Xiaoning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 3 ] [Li, Xiaowei]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

通讯作者信息:

  • [Jin, Xiaoning]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III

ISSN: 0302-9743

年份: 2018

卷: 11166

页码: 439-448

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:577/4955285
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司