• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yin, Wenbin (Yin, Wenbin.) | Fan, Xiaopeng (Fan, Xiaopeng.) | Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Zuo, Wangmeng (Zuo, Wangmeng.)

收录:

CPCI-S EI Scopus

摘要:

Deep learning and convolutional neural networks have achieved a great success in computer vision and image processing, especially in low-level vision problems such as image compression. Recently, some end-to-end image compression methods have been proposed leading to a new direction of image compression. In this paper, we propose an end-to-end reference resource based image compression scheme to exploit the strong correlations with external similar images. In the proposed scheme, the side information is generated from highly correlated images in the reference resource. The features of side information can conceptually guide the compression process and assist the reconstruction process. The important map is employed to guide the allocation of local bit rate of the residual features. The proposed compression scheme is formulated as a rate distortion optimization problem in an end-to-end manner which is solved by ADAM algorithm. Experimental results prove that the proposed compression framework greatly outperforms several image compression frameworks.

关键词:

Convolutional neural networks Image compression Rate distortion optimization Reference resource

作者机构:

  • [ 1 ] [Yin, Wenbin]Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China
  • [ 2 ] [Fan, Xiaopeng]Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China
  • [ 3 ] [Zuo, Wangmeng]Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China
  • [ 4 ] [Shi, Yunhui]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • [Yin, Wenbin]Harbin Inst Technol, Harbin, Heilongjiang, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I

ISSN: 0302-9743

年份: 2018

卷: 11164

页码: 534-544

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:142/3604971
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司