• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

陈立萍 (陈立萍.) | 乔元华 (乔元华.) (学者:乔元华)

摘要:

本文利用SVM方法对DNA序列样本进行判别分类,将编码区序列与非编码区序列作为两个总体,将输入空间映射到高维空间,以求在高维空间中问题线性可分或接近线性可分。再得到原空间的判别曲面,用所得到的判别曲面对编码区与非编码区有差异的特征序列进行划分。为了评估SVM方法分类的准确率,我们采用统计分析中的k-折交叉确认方法对样本数据进行了训练样本与测试,并将其结果与传统的判别分析法进行对照。实际处理结果表明在小样本情况下,SVM方法克服传统的判别分析方法对总体分布要求的局限性,分类效果优于传统的判别分析方法。

关键词:

DNA序列识别 判别分类 SVM方法

作者机构:

  • [ 1 ] 北京工业大学应用数理学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2003

语种: 中文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1270/3854878
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司