• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ou, Jun (Ou, Jun.) | Li, Yujian (Li, Yujian.)

收录:

CPCI-S EI Scopus

摘要:

Convolutional neural networks (CNNs) have made remarkable success in image classification. However, it is still an open problem how to develop new models instead of CNNs. Here, we propose a novel model, namely, two-dimensional perceptron (TDP), to get direct input of 2D data for further processing. A TDP computes hidden neurons from the input via left/right matrix multiplication, producing left-weighted TDP and right-weighted TDP respectively. Experimental results on MNIST and COIL-20 datasets show that, in cases with the same number of hidden neurons, a TDP could perform similarly or slightly better than a corresponding perceptron and a corresponding convolutional neural network. Hence, although TDP needs further exploring in many respects, it is a promising and potential model that may open some new directions for deep neural networks, particularly alternatives to CNNs.

关键词:

Multilayer perceptron Neural networks Two-dimensional perceptron

作者机构:

  • [ 1 ] [Ou, Jun]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Li, Yujian]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

  • [Ou, Jun]Beijing Univ Technol, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018)

年份: 2018

页码: 62-66

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:348/3703069
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司