• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Rui (Yao, Rui.) | Cao, Yang (Cao, Yang.) | Ding, Zhiming (Ding, Zhiming.) (学者:丁治明) | Guo, Limin (Guo, Limin.)

收录:

CPCI-S EI Scopus

摘要:

The false advertising of food and drag on the Internet is mainly based on the content of the product website promotion pages. When people browse a website, they get the most parts of the information from texts on the web. In order to help people to distinguish whether it is false propaganda on this website, we propose a solution for identifying false advertising of text content on food and drug websites by designing the sensitive word recognition model. This paper introduces in detail the specific design and implementation of the food webpage text sensitive text recognition model, including the system improvement of text acquisition and word segmentation algorithm, feature extraction algorithm and text classification in the sensitive word list extraction. The detailed design and execution flow of the voting decision determination result algorithm of the five text classification algorithms are combined for filtering. Finally, we conducted a series of experiments, and the experimental results demonstrated that the proposed filtering solution is effective.

关键词:

text classification False advertisements machine learning sensitive word discrimination feature extraction

作者机构:

  • [ 1 ] [Yao, Rui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Cao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Guo, Limin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • [Yao, Rui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018)

年份: 2018

页码: 516-520

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1632/3896507
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司