• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Yaozong (Jia, Yaozong.) | Xu, Xiaobin (Xu, Xiaobin.)

收录:

CPCI-S

摘要:

Named Entity Recognition (NER) is an important basic task in natural language processing (NLP). In recent years, the method of word representations enhancement by character embedding has significantly enhanced the effect of entity recognition. However, this kind of character embedding method only works on alphabetic spelling words such as English, and the same method is not suitable for Chinese. Aiming at the inherent characteristics of Chinese as morpheme writing, we propose a novel neural network model based on CNN-BiLSTM-CRF in this paper, Convolution neural network (CNN) extracts the glyph embeddings with morphological features from each Chinese character, which are concatenated with the character embeddings with semantic feature information and fed to the BiLSTM-CRF network. We evaluate our model on the third SIGHAN Bakeoff MSRA dataset for simplified Chinese NER task. The experimental results show that our model reaches 91.09% in F-scores which does not rely on the hand-designed features and domain knowledge.

关键词:

BiLSTM Chinese NER glyph embedding CNN

作者机构:

  • [ 1 ] [Jia, Yaozong]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 2 ] [Xu, Xiaobin]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

通讯作者信息:

  • [Jia, Yaozong]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS)

ISSN: 2327-0594

年份: 2018

页码: 831-834

语种: 英文

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:451/4985182
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司