• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liang, Xi (Liang, Xi.) | Zhang, Jing (Zhang, Jing.) (学者:张菁) | Tian, Qi (Tian, Qi.) | Li, Jiafeng (Li, Jiafeng.) | Zhuo, Li (Zhuo, Li.)

收录:

CPCI-S EI Scopus

摘要:

As one of the important parts of road infrastructure, traffic signs provide vital information for road users. Achieving efficient traffic signs retrieval greatly contributes to the intelligent analysis on big traffic data. In this paper, we propose a saliency guided shallow convolutional neural network (CNN) for traffic signs accurate and fast retrieval. Firstly, by unifying deep saliency and hashing learning in a single architecture, the proposed CNN model performs joint learning in a point-wise manner, which is scalable on large-scale datasets. Then, deep saliency features and hashing-like outputs are extracted from traffic sign images with the saliency guided shallow CNN. The binarized hashing-like outputs together with saliency features are used to construct features database. Finally, a coarse to fine similarity measurement is performed by Euclidean distance and Hamming distance to return retrieval results. Experimental results demonstrate the retrieval accuracy of our method outperforms five state-of-the-art methods on GTSRB dataset.

关键词:

binary codes visual saliency traffic sign retrieval convolutional neural networks

作者机构:

  • [ 1 ] [Liang, Xi]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 3 ] [Li, Jiafeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
  • [ 4 ] [Tian, Qi]Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX USA
  • [ 5 ] [Zhuo, Li]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Innovat Ctr Elect Vehicles Beijing, Beijing, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018)

年份: 2018

页码: 340-345

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:145/4563973
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司