• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Yan, Shuo (Yan, Shuo.) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Qu, Guangzhi (Qu, Guangzhi.) | Li, Yong (Li, Yong.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒) | Gu, Rentao (Gu, Rentao.)

收录:

CPCI-S EI Scopus

摘要:

Air pollution is threatening human's health since the industrial revolution, but there are not efficient ways to solve air pollution, so forecasting air quality has become an efficient measure to prevent citizens from hurting of heavy air pollution. In this paper, we proposed an advanced Seq2Seq (Sequence to Sequence) model called attention-based air quality forecasting model (ABAFM) whose RNN encoder is replaced by pure attention mechanism with position embedding. This improvement not only reduces the training time of Seq2Seq model with attention but also enhances the robustness of Seq2Seq models. We implemented ABAFM in Olympic center and Dongsi monitoring stations in Beijing to forecast PM2.5 in future 24 hours. The experimental results showed that the proposed model outperformed the related arts, especially in sudden changes.

关键词:

Air quality Attention forecasting Seq2Seq

作者机构:

  • [ 1 ] [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Bo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yan, Shuo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yong]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Qu, Guangzhi]Oakland Univ, Comp Sci & Engn Dept, Rochester, MI 48309 USA
  • [ 7 ] [Lang, Jianlei]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Gu, Rentao]Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing Lab Adv Informat Networks, Beijing 100876, Peoples R China

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China;;[Liu, Bo]Beijing Univ Technol, Sch Software Engn, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA)

年份: 2018

页码: 728-733

语种: 英文

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:391/3699703
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司